Suppose you want to compute the scalar (dot) product of two vectors:
\[ \mathbf{u} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} 4 \\ 0 \\ -2 \end{pmatrix} \]
u, v
and press The result should be \( 8 + 0 - 2 = 6 \). Thus, \( \mathbf{u} \cdot \mathbf{v} = 6 \).
Suppose you want to compute the vector (cross) product of the following vectors:
\[ \mathbf{u} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} 4 \\ 0 \\ -2 \end{pmatrix} \]
u, v
and press The result should be: \[ \mathbf{u} \times \mathbf{v} = \begin{pmatrix} 6 \\ -10 \\ 12 \end{pmatrix} \]