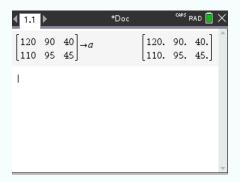


4.11 Statistical tests

4.11.1 χ^2 test for independence


Consider the following set of data:

	Action	Horror	Comedy	Total
color-blind	120	90	40	250
non color-blind	110	95	45	250
Total	230	185	85	500

To be able to do a χ^2 test, you first need to put the data in a matrix.

Enter the data

- ① Press , select Matrix & Vector > Create > Matrix. Set the matrix amount of rows and columns (here: 2×3), and enter the data.
- ② Store the matrix as A. To do that press then and enter A:

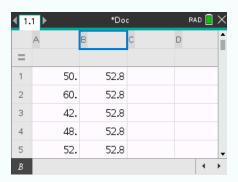
Do the test

① Press , select Statistics > Stat Tests > χ^2 2-way Test. Set matrix [A] as Observed. Press , these results should be displayed:

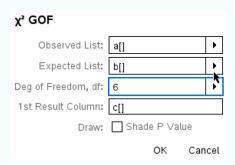
4.11.2 χ^2 goodness of fit test

Consider a person counting the amount of cyclists he sees passing by his street each day:

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
50	60	42	48	52	58	61


The null and alternative hypthesis are

 H_0 : An equal amount of cyclists pass by his street each day.


 H_1 : A different amount of cyclists pass by his street each day.

We want to know at a significance level of 0.05 if he must accept null hypothesis.

- ① Create a new document and select Add List & Spreadsheet.
- ② Fill column A with the amount of cyclist each day. Fill column B with the average amount of cyclists (here: 52.8).

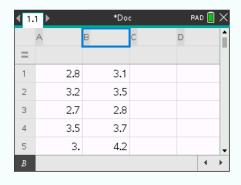
③ Press Renamentary Press, select Statistics > Stat Tests > χ^2 GOF. Fill the parameters as follows:

Press enter . These results should be displayed:

Title	χ² GOF
χ²	5.57
PVal	0.473
df	6.
CompLis	{0.14848

The results should be $\chi^2 = 5.57$ (for the critical value) an p = 0.473 (for the significance level), rounded.

We must then accept the null hypothesis.


4.11.3 The student's t-test

Consider the following data:

x_1	2.8	3.2	2.7	3.5	3.0	2.9	4.1	3.9	
x_2	3.1	3.5	2.8	3.7	4.2	2.6	3.2	2.9	3.8

You want to test whether the x_1 data is on average a than x_2 ($\mu_1 > \mu_2$), at a significance level of 10%

① Create a new document and select Add List & Spreadsheet. Fill column A with x1 values and column B with x2 values.

② Press , select Stastistics > Stat Tests > 2-Sample t Test. Select Data as data input and fill the parameters as follows:

List 1:	a[]	•	
List 2:	b[]	•	
Frequency 1:	1	•	
Frequency 2:	1	•	
Alternate Hyp:	Ha: μ1 > μ2	•	
Pooled:	No	•	*

Press enter . These results should be displayed:

Title	2-Samp
Alternate	μ1 > μ2
t	-0.191
PVal	0.575
df	14.8

The t-value should be t=-0.191 and the p-value should be p=0.575 (rounded). Therefore we must accept the null hypothesis (we **cannot** infer that $\mu_1 > \mu_2$).