Normal distribution 4.9

In the following subsections, we will only compute probabilities involving "<". However, since the normal distribution is continuous, you could replace all the "<" by a "<", and the result would be the same.

Compute $P(X \le a)$ with Normal Cdf function 4.9.1

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$.¹ Suppose you want to compute $\mathbf{P}(X \leq 4)$.

Press , select Probability > Distributions > Normal Cdf, choose a huge negative value for lower (like -10^{10}), and upper : 4 (here $\mu = 5$ and $\sigma = 3$):

•	1.1	Þ	*Doc		CAP	^S RAD	
		Normal Cdf					^
		Lower Bound:	-10^10			•	
		Upper Bound:	4			•	
		μ:	5			•	
		σ:	3			•	
				ОК	Can	cel	

Press then

enter

Here the result should be 0.369 (rounded).

4.9.2 Compute $P(X \ge a)$ with Normal Cdf function

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$. Suppose you want to compute $\mathbf{P}(X \ge 4)$.

Press , select Probability > Distributions > Normal Cdf, choose a huge positive value for upper (like 10^{10}), and lower : 4 (here $\mu = 5$ and $\sigma = 3$):

◀ 1	.1	Þ	*Doc		CAP	' ^s RA	D 🚺	×
no	rm	Normal Cdf					41	
		Lower Bound:	4			•		
		Upper Bound:	10^10			•		
		μ:	5			•		
		σ:	3			×		
				ок	Can	cel		
								~

¹The IB notation for the normal distribution is $\mathcal{N}(\mu, \sigma^2)$, but the TI-Nspire works with σ . We write 3² to express that $\sigma = 3$.

Press then enter

scientia

Here the result should be 0.631 (rounded).

4.9.3 Compute $P(a \le X \le b)$ with Normal Cdf function

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$. Suppose you want to compute $\mathbf{P}(-2 \le X \le 6)$. Press \mathbf{Press} , select Probability > Distributions > Normal Cdf, choose **upper** : 6, and **lower** : -2 (here $\mu = 5$ and $\sigma = 3$):

Press then enter

enter . The result should be 0.621 (rounded).

4.9.4 Find x when $P(X \le x) = c$ with Inverse Normal function

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$. Suppose you want to know for what x we have $\mathbf{P}(X \leq x) = 0.3$.

Press $\mu = 5$ and $\sigma = 3$):

◀ 1.1 ▶			*Doc		RAD 📘	\times
invNorm	n Inver	्र) se No	ormal		3.4268	
I	Area:	0.3		•		
	μ:	5		•		
	σ:	3		•		
			ок	Cancel		
						-

Press then

enter . The result should be x = 3.43 (rounded).

4.9.5 Plot a normal distribution

SCIENTIA

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$.

① To plot the distribution in the calculator, create a new document and select Add Graphs.

2 Enter $f_1(x)=normPdf(x,5,3)$ '. Press enter

3 Choose an appropriate window. Here we chose the following:

Window Settings							
XMin:	-20						
XMax:	20						
XScale:	Auto 🕨						
YMin:	-0.0132974940446						
YMax:	0.1462783813683						
YScale:	Auto			•			
		ОК	Can	cel			

The graph should look like this:

