4.4 Line of best fit

SCIENTIA

keywords: pearson moment product correlation coefficient,

linear regression,

spearman's rank coefficient.

Suppose you want to do a linear regression on the following table:

$m{x}$	2	5	8	15.5	16.2	14	12	13	2.5	1	0.5	-3
$m{y}$	9	-6	-7	-28	-15	-20	-15	-20.3	9	4.1	6	12.1

4.4.1 Enter the data

Create a new document and select Add Lists & Spreadsheet, and fill the list A with the x-values, and the list B with the y-values:

∢ 1.	1 🕨	*Do	c	^{CAPS} RAD 📘	\times
	A	в	с	D	
=					
1	2.	9.			
2	5.	-6.			
З	8.	-7.			
4	15.5	-28.			
5	16.2	-15.			•
A1	2			•	•

4.4.2 Find \bar{x} and \bar{y}

Press and select Statistics > Stat Calculations > Two-Variable Statistics, and fill the parameters as follows:

Two-Variable Sta	atistics	
× List:	a[]	•
Y List:	b[]	•
Frequency List:	1	•
Category List:		•
Include Categories:		•
1st Result Column:		
	ОК	Cancel

Press

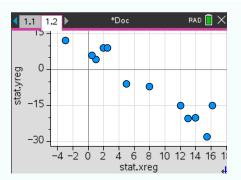
enter . The results are displayed in the table and should be $\bar{x} = 7.23$ and $\bar{y} = -5.93$

4.4.3 Compute the line of best fit

- (1) Press and select Statistics > Stat Calculations > Linear Regression (ax+b).
- ^② Choose the parameters as follows:

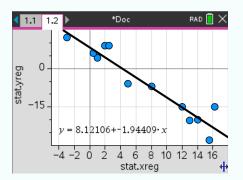
Linear Regressio	n (a+bx)		
X List:	a[]	•]
Y List:	b[]	×	
Save RegEqn to:	f1	►	
Frequency List:	1	•	
Category List:		•	
Include Categories:		•	
	ОК		Cancel

3 Press enter and the following result should appear:


5	=LinRegB
Title	Linear R
RegEqn	a+b*x
а	8.12106
b	-1.94409
r²	0.90294

4.4.4 Graph the line of best fit with the data

① Press **Ctrl** and select Add Data & Statistics.


⁽²⁾ In the y-axis name, select 'stat.yreg'. In the x-axis name, select 'stat.xreg'.

③ choose an appropriate window to have all the points fit nicely in the screen. Here, we chose Xmin=-5, Xmax=18, Ymin=-30 and Ymax=15 (since the minimal x-value is -3, we chose a slightly smaller Xmin=-5)

(4) Press and select Analyze > Regression > Show Linear (ax+b). Press \overline{enter}

